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ABSTRACT 

Given an s- number sequence s E {h, x, y, c, d, a, F}, we find a characteriza- 
tion of the following property of a Banach space X: (Ps)- There is a constant 
C > 0 such that, for any n-dimensional subspace E of X, we can find a 
projection P from X onto E with SUPk ksk(P) < Cn. As an application, we 
prove that X has weak type 2 if and only ifXis finite dimensionally norming, 
thus answering a question of Casazza and Shura. Weak Hilbert spaces are also 
characterized in a new way, the main tool in the proof being a characteriza- 
tion of weak cotype 2 by means of projections. The latter is applied to the 
study of U.A.P., too. 

~0. Introduction 

A fundamental result due to Lindenstrauss and Tzafriri [5] states that a 
Banach space X is isomorphic to a Hilbert space if and only if there is a 
constant C > 0 such that, for every finite-dimensional subspace, there is a 
projection P onto it with U P ]l --< C. Recently, Pisier has proved a K-convex 
version of this theorem ([ 13], 1 I. 15): X is K-convex if and only if there is a 
constant C > 0 such that, for every n-dimensional subspace, we can find a 
projection P onto it with en(P) <-_ C (where en(P) is the n-th entropy number of 
P: see Section 1 for the definitions). In this paper we investigate the properties 
defined replacing the entropy numbers with different s-numbers. We are able 
to find corresponding characterizations of these properties for the Hilbert (hk), 
Weyl (Xk), Chang (Yk), Gelfand (Ck), Kolmogorov (dk), approximation (ak) and 
Grothendieck (Fk) numbers. More precisely, let s E {h, x, y, c, d, a, e, F} and 
define the property 
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(Ps) There exists a constant C > 0 such that, for all n-dimensional subspaces 
E of  X, there is a projection from X onto E with 

sup ksk(P) < Cn. 
k 

With this notation, Pisier's result reads: X is K-convex iff X has (Pe). 
Concerning the other s-numbers, we are going to prove that 

(1) every Banach space has (Ph) and (Px), 
(2) X has (Py) iff X has (Pd) iff X has weak type 2, 
(3) X has (Pc) iff X* has weak type 2, 
(4) X has (Pa) iff  X has (Pr) iff X is a weak Hilbert space. 

We prove this in Section 3 (Theorems 5-8) together with some refinements, 
one of which is the following weak Hilbert space version of the Lindenstrauss- 
Tzafriri theorem cited above: Xis a weak Hilbert space iffthere exist constants 
C > 0 and t~ E (0, ½) such that, for every n- dimensional subspace E of X, there 
is a projection P from X onto E with at6nj(P) <= C. 

In Section 4, Theorem 6 is applied to prove that X has weak type 2 iff X is 
"finite dimensionally norming'. The latter property has been introduced by 
Casazza and Shura and, at first, it has been supposed to be stronger than weak 
type 2 (see [2, Appendix]). 

An important tool in our proofs is provided in Section 2. Here we give a new 
characterization of weak cotype 2 by means of projections (Theorem 1). As an 
application, we prove that a local form of the U.A.P. implies weak cotype 2 
(Corollary 3). 

I am indebted to Prof. G. Pisier for valuable hints and discussions, 
and to the referee for pointing out an error in a previous version of the 
paper. 

§1. Notation 

X, Y, . . . .  E, F , . . .  will be Banach spaces, the letters E, F , . . .  being usually 
reserved for finite-dimensional spaces. Dim(X) (resp. Dimn (X)) is the class of 
all finite-dimensional (resp. of all n-dimensional) subspaces of X. Bx is the 
closed unit ball and X* is the dual of X. 

Let u : X ~  Y be an operator (=cont inuous linear map) and let 
k E N .  Following Pietsch [10, 11] we define the k-th approximation (resp. 
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Weft, Chang, Hilbert, Gelfand, Kolmogorov, entropy, Grothendieck ) number  

of u by 

ak(U ) :----- inf{ [[ U -- V 1[ : v: X---  Y, rank(v) < k}, 

Xk(U) : =  sup{ak(UV): V: 12--'X, II v II --< 1}, 

Yk(U):=sup{ak(vU): v: Y~I2,  II vii --< 1}, 

hk(U):=sup{ak(VUW): W: 12~X, v: Y-'I2, II w II --< 1, II vii < 1}, 

Ck(U) :---- inf{ II u [z II: z c x ,  codim Z < k}, 

dk(U):=inf{ Uqwu II: W c  Y, d im W < k ,  qw: Y--, Y /W 
the quotient  map}, 

{ } ek(u):=inf e > 0 "  3Yl , . . . ,Y2k- ,EYwi thu(Bx)C U ( y i + e B r )  , 
i - I  

Fk(tO) :=  sup{ I det[(ux,, zj)] l Ilk : xl . . . . .  Xk ~ Bx, z~ . . . . .  Zk E Br*}. 

The main  properties o f  these s -numbers  may  be found in [1, 3, 10, 11]. 

• (s) SUPk kl/qSk(U), where 1 < q < oo Given u X--- Y, we denote  by [[ u q,~o :=  
and Sk is any s -number  sequence• 

u is said to be 2-summing if  there is a constant  c > 0 such that, for all finite 

sequences x ~ , . . . ,  xn in X, 

_-<c.  sup Y~ ( z ,  x~ ) J . 
i --  I z ~ B x .  \ i - -  I 

In  this case we let 7t2(u) ffi i n fc .  

For  any operator  u : l ~ X ,  the l(u) norm is defined by (f )2 
l(u) :ffi II u x  II~y. (dx)  , 

where ~ is the canonical Gaussian measure on R ~. Further,  for any v: X-- ,  If, 

we let 

l*(v) :-- sup{ I tr(uv) I : u : l~--, X, l(u ) < 1 }. 

The following lemma is a standard consequence of  a theorem by Lewis and 
known properties of the norms rt2, I and l*: 

L~.MMA O. Let E ~ D i m ~ ( X ) .  Then there exist operators 
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and 

~ : ~ E ,  @ : X ~  

wE : I~ ~ E,  zE : X ~ I~ 

,such that  v e u e  = z e w e  -- idl~ a n d  II uE II = 1,  2(vE) = l ( w r )  = = n 

Given E E Dim,(X), in the proofs to follow we shall always refer to uE, rE, 
wr, zE as to the operators given by the above lemma. 

As for the definitions of K-convexity, weak cotype 2, weak type 2 and of 
weak Hilbert spaces, we refer to Pisier's forthcoming work [ 13]. 

§2. A characterization of weak cotype 2 

By Definition [7], a Banach space X has weak cotype 2 if, for any 
JE(0 ,  1), there exists a constant C - - C ( J ) > 0  such that, for every n- 
dimensional subspace E of X, we can find a subspace F of E with 
d i m F > d n  and dF < C, where dF:ffi d(F, l~ mr) is the Banach-Mazur 

distance between F and the Hilbert space of corresponding dimension. So, 
it is difficult to predict at a glance what sort of projections we are able to 
find in weak cotype 2 spaces. Further, it is by no means clear (from the 
definition) if one can avoid speaking about the l[ spaces in defining this 
concept. Now, clarifying (at least a bit) the relationship between weak cotype 2 
and projections and avoiding citations of l~ spaces are both achieved by 
Theorem 1: 

THEOREM 1. For a Banach space X the following are equivalent: 
(a) X has weak cotype 2. 

(b) For every a >  1, el, t 2 > 0  such that i t + e 2 <  1, there is a constant 
C -~ C(a, e~, e2) > 0 such that the following holds: for all subspaces E C F o f  X 

with dim E = n and dim F < an,  we can f ind a subspace Z o fF  with codim Z < 
eln, a subspace Eo orE with dim Eo > (1 - e2)n and a projection P from Z onto 

Eo N Z such that II P II --< c .  
(c) There exist t~, e2 > 0 with e~ + t2 < ½ such that the statement of(b) holds 

with a = 2. 

PROOF. ( a ) ~ ( b ) .  Let X have weak cotype 2 and fix a > l ,  e , , e~>0 
such that e~ + t2 < 1, and E C F c X with dim E = n, dim F < an. By defini- 
tion of  weak cotype 2, there exists a constant C ffi C(el) > 0 and a subspace Z 
of F such that codim Z < e~n and dz < C. The projection P from Z onto 
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Z N E is now easy to produce since Z is C-euclidean. Taking E0 :=  E we see 
that (b) holds. 

(b)=* (c) is trivial. 
(c)=,(a). We will use a variation of the argument of [12], pp. 561-562, 

which is itselfa variation of the main argument of [5]. Let X satisfy (c) and fix E 
in Xwith  dim E = n. Using Dvoretzky's Theorem and a classical argument, it 
is not hard to see that E ~)2 l~ can be C'-embedded into X, where C' is a 
uniform constant. Let T: E ~ lg be an isomorphism with II T II -- II T - '  II -- 
(dE) '/2. By (c), there are subspaces Z o f E  ~)2 If, G o l D  :-- ((e, Te) : eEE}, 
and a projection P from Z onto Z N G such that codim Z < e~n, dim G > 

(1 - e~)n and II P II =<- c ' c .  
Let F C E b e  such that G = ( ( f ,  Tf) :f~F) and define 

Fl :---- ( f ~ F :  (f, 0)~Z} ,  

F2 :=  { f ~ F : ( 0 ,  Tf)~Z}, 

Fo := Fl n F >  

Clearly, dim F~ >_- (1 - (e~ + e2))n, i = 1, 2, and so dim Fo > (1 - 2(el + e2))n. 
Define the operators a : E --- E,  fl" lg--} E by 

P(x,y)=(a(x)+fl(y), Ta(x)+ Tp(y)), V(x,y)EE ~2l~. 

Then, by the choice of Fo, 

max{ II ra ]to I[, II B I~o II ) < II P I z II --< c ' c .  

Since P is a projection, we have idFo= T-~(Ta [Fo) + P [rFoT ]r~ hence 

dro = 72(idvo) 

---< II T- ' I I  II T,~lall + II/~ I~'F, II II TII 

<= 2C'C(dE) In. 

Now, by the iteration method of Milman (see, e.g., [6]) and by [7] Theorem 1 
this inequality is known to imply that X has weak cotype 2 (remember that E 
was arbitrary and that Fo has dimension proportional to n). [] 

With only minor changes in the proof we get another statement if we 
introduce the Gelfand numbers: 
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THEOREM 2. For a Banach space X the following are equivalent: 
(a) X has weak cotype 2. 

(b) For every a > l  and e~(0 ,  1) there is a constant C = C ( a , e ) > O  

such that the following holds: for all subspace E c F o f  X with 

dim E = n and dim F < an there exists a projection P from F onto E with 
q~j(P) < C. 

(c) There is an t ~ (0, ½) such that the statement of(b) holds with a = 2. 

The rest of  this section will not be used in the sequel. 

The next corollary deals with what may be called a local version of  
U.A.P.: 

COROLLARY 3. Suppose there exist constants e ~(0,  ½) and C > 0 such 

that, for all subspaces E c F o f  X with dim E = n = ½dim F, we can find an 
operator T: F ~ X such that 

(i) II T II --< c ,  
(ii) Te = e for all e ~ E ,  

(iii) rank T < (1 + e)n. 
Then X has weak cotype 2. 

PROOF. Let E C F C X, dim E = n = ½dim F, and let T:  F ~ X satisfy 

(i)-(iii). Let P0 be a projection from T(F) onto E and define P: = PoT. Then P 
is a projection from F onto E and 

q,.j(P) --< II T II ct .j(P0) --< C II Pole  II = C, 

Since the codimension of  E in T(F) is less than en. Since e < ½, we see that X 
satisfies (c) in Theorem 2, so X has weak cotype 2. 1"3 

REMARgS. (i) Notice that if we take e = 0 in Corollary 3 then the hypothe- 
sis actually implies by [5] that X is isomorphic to a Hilbert space. 

(ii) If  we strengthen the hypothesis of  Corollary 3 so as to require that the 
constants e and C be small enough, then X must  also be K-convex. 

As an illustration, we give the following 

FACT. Let X satisfy the hypothesis o f  Corollary 3 and assume that 

Cel/2(1 + e) -112 < 713/22 -9 /2  e -  1 = 0.09 . . . .  

Then X* has weak type 2. 

PROOF. We have only to prove that X is K- convex. Assume the contrary, 
and note that w.l.o.g, we may suppose that X contains isometrical copies 
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of 1~. Let F = 12n, E c F such that dim E = n and de < 16eTt -1 (see e.g. [13], 
Theorem 6.1). Let T: F - - , X  satisfy (i)-(iii). Then, if P is a projection 
from T(F) onto E with I[ P II --< (I + e)-1 + (en)t/2(l + e)-1,2 ([4], p. 237), 
we get 

Yl(le) _--< de II T II IIe II ---< 16e C((1 + e ) - '  + (en)V2(1 + e)-1/2). 
7t 

Since limn_®n-l/27l(l~)=(rt/2)l/2 ([10], 28.2.6), we obtain the in- 
equality r#/22-9/2e-1 < Cel/2(1 + e)-i/2, which contradicts our assumption 

on e and C. [] 

In [12], §5, Pisier asks what can be said about the relationship between 
the U.A.P. with uniformity function g(n )<cn  and the weak Hilbert 
space property. The question is among others motivated by the fact 
that U.A.P. with g(n)= n characterizes Hilbertian spaces ([5]). A partial 
step in this direction is the next immediate consequence of Corollary 3: 

COROLLARY 4. I f  X has the U.A.P. with uniformity function g(n) < cn, 
where c < 3/2, then X has weak cotype 2. 

R~.MARKS. (i) Of course, remark (ii) following Corollary 3 holds in this 
case, too. 

(ii) Using different methods, I was able to prove Corollary 4 without the 
restriction c < ½. 

§3. The main theorems 

THEOREM 5. For every Banach space X and any E E Dim. (X) there exists a 

projection P: X --, E such that 

Xk(P) < (n/k) 1/2, k ~ N .  

Consequently, every Banach space enjoys (Ph) and (Px). 

PROOF. Let E EDimn(X) and define P :=  uevE (Lemma 0). Then, by [11], 
2.7.3, 

II P IlSX& --<  2(P) --< II II = n 

which proves the first assertion. Property (Px) follows trivially and (Ph) follows 
from (Px)because of the easy inequality h k ~ X k . [] 

THEOREM 6. The following are equivalent: 
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(i) Xhas  (Pd). 
(ii) Xhas (Pr). 

(iii) There exist constants C > 0 and J E(0, 1) such 
Dim,(X), there is a projection P: X - -  E with yt6,1(P) < C. 

(iv) X has weak type 2. 

that, for any E E 

PROOF. (i)=*(ii) follows from the inequality Yk <ark ([11], 2.5.13), and 
(ii) =. (iii) is trivial. 

(iii)=*(iv). Let C and J be as in (iii). Fix E ~Dim,(X), let P : X ~ E  

be a projection with Yt6,j(P)=< C, and let v:E--- I f  be an operator. Since 
dt6.1(vP)=yt6. (ve)<=Cllvll, by the definition of the Kolmogorov 
numbers there is an orthogonal projection q:l~---l k, where k > [(1 -O)n],  
such that II qvP II =<- c II v II. Since obviously qvPextends qv, we may proceed 
as in the proof of Theorem 10 of [7] to deduce that X* has weak cotype 2 and 
that X is locally n-euclidean (i.e., K-convex). 

(iv) =* (i). Let X have weak type 2, E E Dim, (X) and P:  = WE ZE (lemma 0). 
Then, by [10], 11.8.2, 

dk ( P ) ~ d[kl2]( W E )d[kl2]( Z E ) = d[k/21( WE )a[k/2|( ZE ). 

Now, since d[kl2](WE) = C[kl2](W~) ([10], 11.7.6), by [8], Proposition 1, there is an 
absolute constant x > 0 such that 

dtkm(We) < x[k/2] - 1/21(wE). 

Further, by the definition of weak type 2, 

atkm(ZE) < wT2(X)[k/2] -l/Zl*(ze). 

Combining all this and using the lemma we get a constant C = C(X) such that 

dk(P) < C n 
k '  

which shows that X has (Pd). [] 

The characterization of (Pc) appears to the the most deep one. In view 
of the application to weak Hilbert spaces (see Theorem 8), it may be interest- 
ing to note that an important step in the proof of the next theorem is achieved 
by a variation of the original Lindenstrauss-Tzafriri argument in [5] (see 
Theorem 1). 
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THEOREM 7. X has (Pc) i f f  X* has weak type 2, i.e., i f f  X is K-convex and 
has weak cotype 2. 

PROOF. 
Step 1. I f  X* has weak type 2, then X has (Pc). 
Let E ~ Dimn(X) and P :-- WEZE. By Proposition 1 of[8], there is x > 0 such 

that 
U z~ IIt?~ --< xl(z*) =< ~(x)l*(z~) = xK(X)n ',2 

(here K(X) is the K-convexity constant of X). On the other hand, since X 
has weak cotype 2, we have 

II wE IIt?~ --< wC~(X)l(w~)= wC2(X)n ''z. 

Finally, by [11], 2.4.9, we get a constant x' > 0 such that 

II P IllCL --< x'  Ii w~ II~,~ II z~ II~L =< [x'xK(X)wC2(X)ln, 

hence X has (Pc). 
Step 2. I f  X has (Pc) then X is K-convex. 
This follows at once from a result by Carl [ 1, Theorem 1 ], which states that 

there is a constant x such that II • II 1,*~ --< x II • II tcL, and from Pisier's charac- 
terization of K-convexity by means of (Pc) ([ 13], 11.15). 

Step 3. I f  X has (Pc) then X has weak cotype 2. 
Let Xhave  (Pc) and let g~(0 ,  ½). Then, for any E ~Dimn(X) there exists a 

projection P from X onto E with ct6,3(P) < C/tL By Theorem 2, we get that X 
has weak cotype 2. [] 

THEOREM 8. The following are equivalent: 

(i) Xhas  (Pa). 
(ii) There exist constants C > 0 and g ~(0, ½) such that, for any E 

Dim~(X), there is a projection P from X onto E with at6~l(P) < C. 

(iii) Xhas  (Pr). 
(iv) There exists a constant C > 0 such that, for any E ~ Dimn(X), there is a 

projection P: X ~ E with F,(P) < C. 
(v) X is a weak Hilbert space. 

(vi) There exists a constant C > 0 such that, for any E E Dimn(X), there is a 

projection P: X--,  E with U P IlSaL ----< Cn 1/2. 

REMARK. The equivalence between (ii) and (v) may be regarded as a weak 
Hilbert space version of the Lindenstrauss-Tzafriri result in [5]. 

PROOF. The implications ( v ) ~  ( i ) ~  (ii) and (iii)=, (iv) are trivial. 
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(ii)=. (v). If X satisfies (ii), then by the inequalities Ck < ak and Yk <= ak 
([11], 2.3.4), X satisfies condition (iii) of Theorem 6 and condition (c) in 
Theorem 2 as well: these facts together imply that Xhas weak type 2 and weak 
cotype 2, i.e. X is a weak Hilbert space. 

(v )~  (vi). Let E EDim,(X), P := ueve (Lemma 0). Then (by [11], 2.3.16) 

II e II?L -- U Ileal _--< II V* _--< Cn2(ve)= Cn l/z, 

where C = C(X), since if X is a weak Hilbert space, then so is X*, too. 
(iv)=.(v). (iv) easily implies that F,(ide) < C for all E EDim,(X). Since 

F~(idx) = supeeoim.tx) F,(ide), we get sup, F, ( idx)< ~ ,  which is known to 
imply that X is a weak Hilbert space ([13], Theorem 12.6). 

(v )~  (iii). Let E E Dim,(X) and P := wezE (Lemma 0). Since Xand X'have  
both weak cotype 2, by [9], Theorem 2.6, there is a constant C > 0 such that 

Fk(We) <= Ck-l/2l(we) and Fk(ge)---- Fk(Z~)_--< Ck-lal(z'e), 

for all kEN.  By [3], 1.1.2 and 1.1.4, we have then 

Fk(P) = Fk(We)Fk(Ze) <--_ C2k - lnl/2l(z~). 

Now, since X is K-convex, we have l(zk)<-_ K(X)l*(ze), and so Fk(P)_-< 
C'(n/k) for all k, as we had to prove. [] 

Theorem 7 yields the following statement: I f  X is K-convex, then the 
following are equivalent: 

(i) X has weak cotype 2. 
(ii) There exist constants C > 0 and ~ E(O, ½) such that, for any E E 

Dim~(X), there is a projection P from X onto E with cta, l(P) < C. 
Can we avoid the K-convexity assumption? 

§4. Finite dimensionally norming spaces 

The definitions of finite dimensionally norming and of well-normed spaces 
have been given in an appendix to the book [2] by Casazza and Shura, 
where it is asked what exactly these properties are. We will show that weak 
type 2 is equivalent to "finite dimensionally norming" and that "weakly well 
normed" (our variation of"well-normed") has a lot to do with X* having weak 

type 2. 

D~F~ITIOr~. (i) X is finite dimensionally norming (FDN) if there are 
constants C > 0  and c~E(0, 1) such that, for any EEDim(X),  there exists 
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F E Dim(X*) with dim F ->_ O dim E such that E is C-norming over F, i.e. such 
that 

Ilfll <=Csup{l( f ,e) l:e~Be} for a l l f ~ F .  

(ii) X is weakly well-normed (WWN) if for each O E (0, 1) there is a constant 
C~ > 0 such that, for any E E Dim(X), there exist F ~ Dim(X*) and a subspace 

E0 of E with 

d i m F  < (1 + 0)dim E, d imEo> (1 - 0)dim E, 

and such that F is Crnorming over Eo. 

THEOREM 9. The following are equivalent: 
(i) X has weak type 2. 

(ii) X is FDN. 

PROOF. (i)=* (ii). Let 0 E (0, 1), E E Dim,(X). By Theorem 6 there are a 
constant C > 0 and a projection P : X ~ E  such that dtc~_6),](P)=< C. This 
means that there is a subspace E0 of E with dim E0 < (1 - O)n and such that 
II qe U ---< c ,  where q : E ~ E / E o  is the quotient map. Let F:=(qP)*(E/Eo)* 

(F C X*). Then dim F > 6n and E is C-norming over F. In fact, l e t f ~ F a n d  
e* ~ E *  be such that P'e* = f.  Then we have 

II f II = II P'e* II C II e* II = c sup{ I (e*, e ) I: e E Be. } 

= Csup{ I ( f ,  e)I:  e~Be}, 

since (e*, e) = (e*, Pe) = (P'e*, e) = ( f ,  e) for all e~E .  
(ii)ffi. (i). Let X be FDN, and consequently let J E(0, 1) and C > 0 be 

constants such that, given an n-dimensional subspace E of X, we can find 
F C X* with dim F > On and such that E is C-norming over F. Let then 
G : = { f I E ' f E F  } CE*.  Since E is C-norming over F, the m a p F - ~ G ,  
f ~  f [E is invertible and its inverse R has norm ___< C. Using the Hahn-Banach 
Theorem, extend R to an isomorphic embedding R" E*-*X* such that 
R* Ix =:  P is a projection of X onto E. Then, if j :  G-,E*  is the natural 
injection, we have 

II J*P II --< II/~J l[ -- I[ R II --< C 

and thus di,_6).](P) =< C, since j* is a quotient map of rank > On. By Theorem 
6, X has weak type 2. [] 
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REMARK. It is clear from the proof  that i fXis  FDN, then for each J E (0, 1) 
there is a constant C -- C(J) such that the same situation as in the definition of  
FDN holds. 

Since it is open whether WWN implies K-convexity (I believe it does), 
regarding WWN we can only prove the following 

THEOREM 10. (i) I f  X* has weak type 2 then X is WWN. 
(ii) I f  X is W W N  then X has weak cotype 2. 

PROOF. (i) Let X* have weak type 2, E E D i m , ( X ) ,  J ~ ( 0 ,  1). By 
Theorem 7, there are a constant C > 0 and a projection P : X - - . E  such 
that cl~,](P)_-< C/J, where C depends only on X. This means that there 

is a subspace Z of Xwi th  cod Z >_- [Jn] and II P [z II --< c /& Let Eo :=  z c E 
and F : f ( X / ( k e r P  [z))*. Then d i m E 0 > ( 1 - J ) n  and d i m F < ( 1  + J ) n .  

Further, if e~Eo and z ~ k e r P [ z  we have Ilell  = I I P ( e - z ) l l  =< 
II P [z II II e -  z II, so that if e is considered as an element of F* = 

X/(ker P [ z) it follows that 

II e I!~ =< (c/~) IIe I1~ for  all eeEo, 

which means that X has WWN. 

(ii) Let E E Dim,  (X) and fix ~ e (0, ½). Let Eo C E,  F e Dim(X*) be such that 

d im Eo > (1 - J)n ,  d im F < (1 + J)n,  and let F be C6-norming over Eo. Let 
q:  X--* F* be the natural quotient map and G : = q(E), Go : = q(Eo). Since F is 
C6-norming over Eo, q I~:Eo--" Go is invertible with inverse R such that 

IIR II --<G. 
Let P :  F* ~ Go be a projection. Then, since dim F* - d im Go _-< 

(1 + J)n - (1 - J)n ffi 2dn, we have 

q~ . ]+ , (RPq)  _-< q~, .]+,(RP) < II R P  Ioo II = II R II -< c .  

Now, RPq is a projection of  X onto E0 and so, by Theorem I, choosing J 
suificiently small we see that X has weak cotype 2. [] 

REMARK. Arguing as in the remark after Corollary 3, we can see that f fXis  
WWN and if there is a dE(0 ,  ½) such that C6t~1/2(1 - t ~ )  -1/2 i8 small enough 

(e.g., strictly less than 0.09), then X must  be K-convex. 
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