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ABSTRACT

Given an s-number sequence s €{#, x, y, ¢, d, a, '}, we find a characteriza-
tion of the following property of a Banach space X : (P,). There is a constant
C >0 such that, for any n-dimensional subspace E of X, we can find a
projection P from X onto E with sup; ks, (P) = Cn. As an application, we
prove that X has weak type 2 if and only if X is finite dimensionally norming,
thus answering a question of Casazza and Shura. Weak Hilbert spaces are also
characterized in a new way, the main tool in the proof being a characteriza-
tion of weak cotype 2 by means of projections. The latter is applied to the
study of U.A.P., too.

§0. Introduction

A fundamental result due to Lindenstrauss and Tzafriri [5] states that a
Banach space X is isomorphic to a Hilbert space if and only if there is a
constant C > 0 such that, for every finite-dimensional subspace, there is a
projection P onto it with || P || = C. Recently, Pisier has proved a K-convex
version of this theorem ([13], 11.15): X is K-convex if and only if there is a
constant C >0 such that, for every n-dimensional subspace, we can find a
projection P onto it with ¢,(P) = C (where ¢,(P) is the n-th entropy number of
P: see Section 1 for the definitions). In this paper we investigate the properties
defined replacing the entropy numbers with different s-numbers. We are able
to find corresponding characterizations of these properties for the Hilbert (%),
Weyl (x;), Chang (), Gelfand (c; ), Kolmogorov (d,), approximation (g, ) and
Grothendieck (I';) numbers. More precisely, let s€{h, x,y,c,d,a,e,I'} and
define the property
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(P,) There exists a constant C > 0 such that, for all n-dimensional subspaces
E of X, there is a projection from X onto E with

sup ksi(P)=Cn.
k

With this notation, Pisier’s result reads: X is K-convex iff X has (P.).
Concerning the other s-numbers, we are going to prove that

(1) every Banach space has (P,) and (P,),

(2) X has (P,) iff X has (P,) iff X has weak type 2,

(3) X has (P,) iff X* has weak type 2,

(4) X has (P,) iff X has (Py) iff X is a weak Hilbert space.

We prove this in Section 3 (Theorems 5-8) together with some refinements,
one of which is the following weak Hilbert space version of the Lindenstrauss—
Tzafriri theorem cited above: X is a weak Hilbert space iff there exist constants
C >0 and 6 €(0, }) such that, for every n-dimensional subspace E of X, there
is a projection P from X onto E with a,(P) = C.

In Section 4, Theorem 6 is applied to prove that X has weak type 2 iff X is
“finite dimensionally norming”. The latter property has been introduced by
Casazza and Shura and, at first, it has been supposed to be stronger than weak
type 2 (see [2, Appendix]).

An important tool in our proofs is provided in Section 2. Here we give a new
characterization of weak cotype 2 by means of projections (Theorem 1). As an
application, we prove that a local form of the U.A.P. implies weak cotype 2
(Corollary 3).

I am indebted to Prof. G. Pisier for valuable hints and discussions,
and to the referee for pointing out an error in a previous version of the
paper.

§1. Notation

X,Y,...,E, F,...will be Banach spaces, the letters E, F, . . . being usually
reserved for finite-dimensional spaces. Dim(X) (resp. Dim, (X)) is the class of
all finite-dimensional (resp. of all n-dimensional) subspaces of X. By is the
closed unit ball and X* is the dual of X.

Let u:X—Y be an operator (=continuous linear map) and let
k €N. Following Pietsch [10, 11] we define the k-th approximation (resp.
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Weyl, Chang, Hilbert, Gelfand, Kolmogorov, entropy, Grothendieck) number
of u by

a(u):=inf{ |u —v| :v: X—=Y, rank(v) <k},

x(u):=sup{a,(w):v: L= X, || v| =1},

yi(u):=sup{a(u):v: Y=L, |v| =1},

h(u) :=sup{a(vuw) :w: L—=X,v: Y=L, |w]| =1, |v| =1},

co(u):=inf{ u |, || : Z C X, codim Z < k},

du):=inf{ |lgwu |: WCY,dim W<k,qy:Y—=>Y/W

the quotient map},

2k—1
ek(u):=inf{e>0: Iy, ...,y EYwithu(By)c U (y,-+8By)},

i=1

T(w) ;= sup{|det[(ux;, z)]|"*: x,, ..., X EBx, 2y, . . . , 2 EBp}.

The main properties of these s-numbers may be found in [1, 3, 10, 11].
Given u: X —Y, we denote by || u ||}, := sup, ks, (u), where | =g < oo
and s, is any s-number sequence.
u is said to be 2-summing if there is a constant ¢ > 0 such that, for all finite
sequences X, ..., X, in X,

( i Il ux; II’)Uzéc- sup ( E (z,x,-)’)m.
i=1

ZEBys \i=1

In this case we let n,(u) =infc.
For any operator « : I} — X, the /() norm is defined by

tyi= [ wae @)

where y, is the canonical Gaussian measure on R”. Further, for any v: X =3,
we let

*(@) :=sup{|tr(w)|: u: = X, l(u) = 1}.

The following lemma is a standard consequence of a theorem by Lewis and
known properties of the norms m,, | and [*:

LEMMA 0. Let E €Dim,(X). Then there exist operators
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ug:}—E, ve:X—0
and
wg:l3—E, zg:X—B
such that vgug = zgwg = idg and || ug || = 1, mvg) = l(wg) = I*(zg) = n'2.

Given E €Dim,(X), in the proofs to follow we shall always refer to u, vz,
wg, Zg as to the operators given by the above lemma.

As for the definitions of K-convexity, weak cotype 2, weak type 2 and of
weak Hilbert spaces, we refer to Pisier’s forthcoming work [13].

§2. A characterization of weak cotype 2

By Definition [7], a Banach space X has weak cotype 2 if, for any
0€(0, 1), there exists a constant C = C(6)>0 such that, for every n-
dimensional subspace E of X, we can find a subspace F of E with
dim F=én and dp <C, where dp:=d(F,§™") is the Banach-Mazur
distance between F and the Hilbert space of corresponding dimension. So,
it is difficult to predict at a glance what sort of projections we are able to
find in weak cotype 2 spaces. Further, it is by no means clear (from the
definition) if one can avoid speaking about the /; spaces in defining this
concept. Now, clarifying (at least a bit) the relationship between weak cotype 2
and projections and avoiding citations of /} spaces are both achieved by
Theorem 1:

THEOREM 1. For a Banach space X the following are equivalent:

(a) X has weak cotype 2.

(b) For every a>1, &,&>0 such that ¢, +&<1, there is a constant
C = C(a, &, &) > 0 such that the following holds: for all subspaces E C F of X
withdim E = nand dim F = an, we can find a subspace Z of F with codim Z <
&n, a subspace E, of E with dim Ey = (1 — &,)n and a projection P from Z onto
EyNZsuchthat |P|| =C.

(c) There exist ¢,, &,> 0 with &, + &, < % such that the statement of (b) holds
witha=2.

PrOOF. (a)=(b). Let X have weak cotype 2 and fix a>1, &,&>0
such that ¢; + ¢, <1, and E C F C X with dim E = n, dim F =< an. By defini-
tion of weak cotype 2, there exists a constant C = C(g;) > 0 and a subspace Z
of F such that codim Z = ¢;n and d; = C. The projection P from Z onto
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Z N E is now easy to produce since Z is C-euclidean. Taking E, := E we see
that (b) holds.

(b)=(c) is trivial.

(c)=(a). We will use a variation of the argument of [12], pp. 561-562,
which is itself a variation of the main argument of [5]. Let X satisfy (c) and fix E
in X with dim E = n. Using Dvoretzky’s Theorem and a classical argument, it
is not hard to see that F @z 15 can be C’-embedded into X, where C’ is a
uniform constant. Let T: E — [} be an isomorphism with || T || = | T7'|| =
(dg)"*. By (c), there are subspaces Z of E @z I3, Gof D:={(e, Te): e€EE},
and a projection P from Z onto Z N G such that codim Z <¢;n, dim G =
(I1—¢g)nand | P| =CC.

Let F C E be such that G = {(f, Tf) : fEF} and define

F,:={fEF:(f,0)€Z),
F,:={f€F:0,Tf)eZ)},
Fo =FNF,

Clearly, dim F, = (1 — (g, + &))n, i = 1, 2, and so dim Fy, = (1 — 2(g, + &))n.
Define the operators a: E—FE, : 15— E by

P(x,y) = (a(x) + B(»), Telx) + TB(»)),  V(x,y)EE D, 1.
Then, by the choice of F,,
max({ | Te|rll, 18 |ml}= 1P|z =CC.
Since P is a projection, we have ids, = T~ (Ta | AR |mT | Fp hence
dp,= 7(idr)

= (T (Te| 1)) = 1B | T | )

SUT' NN Talnl + 081wl ITI

= 2C'C(dg)™.

Now, by the iteration method of Milman (see, e.g., [6]) and by [7] Theorem 1
this inequality is known to imply that X has weak cotype 2 (remember that E
was arbitrary and that F; has dimension proportional to n). O

With only minor changes in the proof we get another statement if we
introduce the Gelfand numbers:
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THEOREM 2. For a Banach space X the following are equivalent:

(a) X has weak cotype 2.

(b) For every a>1 and ¢€(0, 1) there is a constant C = C(a,&)>0
such that the following holds: for all subspace ECF of X with
dim E = n and dim F =< an there exists a projection P from F onto E with
Cenf(P) = C.

(c) There is an € €(0, %) such that the statement of (b) holds with a = 2.

The rest of this section will not be used in the sequel.
The next corollary deals with what may be called a local version of
U.A.P.

COROLLARY 3. Suppose there exist constants ¢ €(0,4) and C >0 such
that, for all subspaces E C F of X with dim E = n = idim F, we can find an
operator T: F — X such that

M ITH=c,
(ii) Te=eforalle€E,

(iii) rank T = (1 + &)n.
Then X has weak cotype 2.

ProoF. Let ECFCX, dimE =n=14dimF, and let T: F — X satisfy
(1)~(iii). Let P, be a projection from T(F) onto E and define P:= P,T. Then P
is a projection from F onto E and

CnyPY= | T || (P = C || ol || =C,

Since the codimension of E in T(F) is less than en. Since ¢ <3}, we see that X
satisfies (c) in Theorem 2, so X has weak cotype 2. O

ReEMARKs. (i) Notice that if we take ¢ = 0 in Corollary 3 then the hypothe-
sis actually implies by [5] that X is isomorphic to a Hilbert space.

(i1) If we strengthen the hypothesis of Corollary 3 so as to require that the
constants ¢ and C be small enough, then X must also be X-convex.

As an illustration, we give the following

Fact. Let X satisfy the hypothesis of Corollary 3 and assume that
Ce"(1 +&) < g¥2%e-1=0.09... .
Then X* has weak type 2.

ProoF. We have only to prove that X is K-convex. Assume the contrary,
and note that w.l.o.g. we may suppose that X contains isometrical copies
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of I'. Let F = [?", E C F such that dim E = n and d < 16en ' (see e.g. [13],
Theorem 6.1). Let T:F— X satisfy (1)-(iii). Then, if P is a projection
from T(F) onto E with || P || =(1 +¢&)~'+ (en)"*(1 +¢)~"* ([4], p. 237),
we get

16
N =dg | TINP| = 78 C((1 +&)~" + (en) V(1 + &)™),

Since lim,_,n "y(5)=(x/2)"* ([10], 28.2.6), we obtain the in-
equality n¥?2-"%¢~!' < Ce"¥(1 + &)=, which contradicts our assumption
ongand C. O

In [12], §5, Pisier asks what can be said about the relationship between
the U.A.P. with uniformity function g(n)=<cn and the weak Hilbert
space property. The question is among others motivated by the fact
that U.AP. with g(n) = n characterizes Hilbertian spaces ([5]). A partial
step in this direction is the next immediate consequence of Corollary 3:

COROLLARY 4. If X has the U.A.P. with uniformity function g(n) = cn,
where ¢ < 3/2, then X has weak cotype 2.

REMARKS. (i) Of course, remark (ii) following Corollary 3 holds in this
case, t0o.

(ii) Using different methods, I was able to prove Corollary 4 without the
restriction ¢ < 3.

§3. The main theorems

THEOREM 5. For every Banach space X and any E € Dim, (X) there exists a
projection P: X — E such that

x(P)=(n/k)"*, kEN.
Consequently, every Banach space enjoys (P,) and (P,).

Proof. Let E €Dim,(X) and define P := uz vz (Lemma 0). Then, by [11],
2.7.3,

I P15 = maP) = || g || makvg) = 1™,

which proves the first assertion. Property (P, ) follows trivially and (P, ) follows
from (P,) because of the easy inequality 4, =< x;. O

THEOREM 6. The following are equivalent:
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(i) X has (P,).
(ii) X has (P,).
(iii) There exist constants C >0 and 6 €(0, 1) such that, for any EE
Dim,(X), there is a projection P: X — E with y,(P) = C.
(iv) X has weak type 2.

ProoF. (i)=(ii) follows from the inequality y, =d, ([11], 2.5.13), and
(i1)= (iii) is trivial.

(ili)=(iv). Let C and 6 be as in (iii). Fix E €Dim,(X), let P: X—~E
be a projection with y,(P)=C, and let v: E—/; be an operator. Since
Aign(VP) = YvP) = C | v||, by the definition of the Kolmogorov
numbers there is an orthogonal projection g: [f— [X, where k = [(1 — d)n],
such that || guP | = C || v]| . Since obviously guvP extends gv, we may proceed
as in the proof of Theorem 10 of [7] to deduce that X* has weak cotype 2 and
that X is locally n-euclidean (i.e., K-convex).

(iv)=(i). Let X have weak type 2, E €Dim,(X) and P := wgz; (lemma 0).
Then, by {10], 11.8.2,

di(P) = d[k/2}(WE)d[k/2](zE) = d[k/l](wE)a[kIZJ(zE)~

Now, since djy»(We) = cp(wz) ([10], 11.7.6), by [8], Proposition 1, there is an
absolute constant ¥ > 0 such that

dyenf(wg) = k[k/12] 2 1(wg).
Further, by the definition of weak type 2,
auf(ze) = wT(X)k/2] ~V21*(z;).

Combining all this and using the lemma we get a constant C = C(X) such that
n
dk(P ) é Cz ’

which shows that X has (P,). O

The characterization of (P,) appears to the the most deep one. In view
of the application to weak Hilbert spaces (see Theorem 8), it may be interest-
ing to note that an important step in the proof of the next theorem is achieved
by a variation of the original Lindenstrauss-Tzafriri argument in [5] (see
Theorem 1).
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THEOREM 7. X has (P,) iff X* has weak type 2, i.e., iff X is K-convex and
has weak cotype 2.

PRrOOF.
Step 1. If X* has weak type 2, then X has (P.).
Let E €Dim,(X) and P := wg z;. By Proposition 1 of {8], there is k¥ > 0 such

that
| ze 152 = xl(z2) = kK(X)I*(z5) = kK(X)n'?

(here K(X) is the K-convexity constant of X). On the other hand, since X
has weak cotype 2, we have

| we 15 = wCX)(wg) = wCx(X)n'?.
Finally, by [11], 2.4.9, we get a constant x’ > 0 such that
1P, =wll we 155 1l Ze 153 = [K'kK(X)wCAX)]n,

hence X has (P.).

Step 2. If X has (P,) then X is K-convex.

This follows at once from a result by Carl [1, Theorem 1], which states that
there is a constant k such that || - [|{% =« || - ||, and from Pisier’s charac-
terization of K-convexity by means of (P,) ([13], 11.15).

Step 3. If X has (P.) then X has weak cotype 2.

Let X have (P,) and let 4 €(0, 3). Then, for any E € Dim,(X) there exists a
projection P from X onto E with ¢;5,(P) = C/d. By Theorem 2, we get that X
has weak cotype 2. O

THEOREM 8. The following are equivalent:
(1) X has (P,).
(ii) There exist constants C >0 and 6€E€(0, %) such that, for any EE
Dim, (X), there is a projection P from X onto E with a,(P) = C.
(iii) X has (Pp).
(iv) There exists a constant C > 0 such that, for any E € Dim,(X), thereisa
projection P: X —E withT,(P) = C.
(v) X is a weak Hilbert space.
(vi) There exists a constant C > 0 such that, for any E € Dim,(X), thereisa
projection P: X —E with || P ||, = Cn'~
REMARK. The equivalence between (ii) and (v) may be regarded as a weak
Hilbert space version of the Lindenstrauss-Tzafriri result in [5].

Proor. The implications (v)= (i)= (ii) and (iii)=> (iv) are trivial.
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(il)=(v). If X satisfies (i), then by the inequalities ¢, = a; and y, = a;
([11], 2.3.4), X satisfies condition (iii) of Theorem 6 and condition (c) in
Theorem 2 as well: these facts together imply that X has weak type 2 and weak
cotype 2, i.e. X is a weak Hilbert space.

(v)=(vi). Let E€Dim,(X), P:= uzvg (Lemma 0). Then (by [11], 2.3.16)

P52 = lvdud 15 = fl o 5% = Crolvg) = Cn'™,

where C = C(X), since if X is a weak Hilbert space, then so is X*, too.
(iv)=(v). (iv) easily implies that I',(idz) = C for all E €Dim,(X). Since
I',(id,) = SuPgepim,x (i), we get sup,I',(idy) <o, which is known to
imply that X is a weak Hilbert space ([13], Theorem 12.6).
(v)=(i11). Let E €Dim,(X)and P:= wg z; (Lemma 0). Since X and X*have
both weak cotype 2, by [9], Theorem 2.6, there is a constant C > 0 such that

T(we) = Ck™"(wg) and T(zg) =T(zf) = Ck~"?l(zp),
for all Kk EN. By [3], 1.1.2 and 1.1.4, we have then
TW(P) = Tu(we)k(zg) = C?k~'n'"l(zE).

Now, since X is K-convex, we have /(zf) = K(X)I*(zg), and so I'\(P)=
C’(n/k) for all k, as we had to prove. O

Theorem 7 yields the following statement: If X is K-convex, then the
following are equivalent:
(i) X has weak cotype 2.
(i1) There exist constants C >0 and 6 €(0,3) such that, for any EE
Dim,(X), there is a projection P from X onto E with ¢, (P) = C.
Can we avoid the K-convexity assumption?

§4. Finite dimensionally norming spaces

The definitions of finite dimensionally norming and of well-normed spaces
have been given in an appendix to the book [2] by Casazza and Shura,
where it is asked what exactly these properties are. We will show that weak
type 2 is equivalent to “finite dimensionally norming” and that “weakly well
normed” (our variation of “well-normed™) has a lot to do with X* having weak
type 2.

DEeFINITION. (i) X is finite dimensionally norming (FDN) if there are
constants C >0 and 4 €(0, 1) such that, for any E €Dim(X), there exists
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F €Dim(X*) with dim F = d dim E such that E is C-norming over F, i.e. such
that
I fll SCsup{|(f,e)|:e€EB;} forallfEF.

(ii) Xis weakly well-normed (WWN) if for each d €(0, 1) there is a constant
C; > 0 such that, for any E € Dim(X), there exist F € Dim(X*) and a subspace
E, of E with

dimF=(1+06)dimE, dimE;Z(1-J)dimE,

and such that F is Cs;-norming over E,.

THEOREM 9. The following are equivalent:
(1) X has weak type 2.
(ii) X is FDN.

PrOOF. (i)=(ii). Let 4 €(0, 1), E €Dim,(X). By Theorem 6 there are a
constant C >0 and a projection P: X — E such that dj;_;.(P) = C. This
means that there is a subspace E; of E with dim E, < (1 — d)n and such that
|l 4P | = C, where ¢q: E — E/E, is the quotient map. Let F:= (qgP)*(E/E,)*
(F C X*). Then dim F = én and E is C-norming over F. In fact, let f€ F and
e* € E* be such that P*¢* = f. Then we have

N fll = | P**|| =C | e*]| =Csup{|(e* e)|:eEB:}
=Csup{|(f,e)|:eEBg},

since (e*, e) = (e*, Pe) = (P*¢e*,e) = (f,e) foralleEE.

(ii)=(i). Let X be FDN, and consequently let dE€(0, 1) and C >0 be
constants such that, given an n-dimensional subspace E of X, we can find
F C X* with dim F = én and such that E is C-norming over F. Let then
G:={f|E:fEF}CE*. Since E is C-norming over F, the map F—G,
[ f | gls invertible and its inverse R has norm = C. Using the Hahn-Banach
Theorem, extend R to an isomorphic embedding R : E*— X* such that
R* l x =: P is a projection of X onto E. Then, if j: G—E* is the natural
injection, we have

I*PH = IR = IR =C

and thus dy; _ 4 (P) = C, since j*is a quotient map of rank = dn. By Theorem
6, X has weak type 2. , a
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REMARK. Itisclear from the proof that if X is FDN, then for eachd €(0, 1)
there is a constant C = C() such that the same situation as in the definition of
FDN holds.

Since it is open whether WWN implies K-convexity (I believe it does),
regarding WWN we can only prove the following

THEOREM 10. (i) If X* has weak type 2 then X is WWN.,
(ii) If X is WWN then X has weak cotype 2.

PrROOF. (i) Let X* have weak type 2, E€Dim,(X), 6€(0,1). By
Theorem 7, there are a constant C >0 and a projection P: X —E such
that ¢ (P) = C/d, where C depends only on X. This means that there
is a subspace Z of X with cod Z = [én]and |P|, || <C/6. Let E,:=Z CE
and F:=(X/(ker P |;))*. Then dim E,=(1—¢&)n and dim F < (1 + &)n.
Further, if e€E, and zE€kerP|, we have |e| = ||Pe~2z)| =
IPlz) lle—z ||, so that if e is considered as an element of F*=
X/(ker P | ;) it follows that

lel:=(Cid)|| el foralle€k,

which means that X has WWN.

(ii) Let E€Dim,(X) and fix d €(0, }). Let E, C E, F € Dim(X*) be such that
dim Ey = (1 — d)n, dim F =(1 + d)n, and let F be C;-norming over E,. Let
g : X — F*be the natural quotient map and G := ¢(E), G, := q(E,). Since F is
Cs-norming over E,, ¢ | 5 Eo— Gy is invertible with inverse R such that

IR =C.

Let P.F*—G, be a projection. Then, since dim F* —dim G,=

(1+d)n —(1 —6)n =20n, we have

Com+1(RPG) = Cpam+(RP) = | RP |6, | = | R || =C.

Now, RPq is a projection of X onto E, and so, by Theorem 1, choosing &
sufficiently small we see that X has weak cotype 2. O

REMARK. Arguing as in the remark after Corollary 3, we can see that if X is
WWN and if there is a d €(0, §) such that C,6"*(1 — §)~"? is small enough
(e.g., strictly less than 0.09), then X must be K-convex.
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